Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.991
Filtrar
1.
Front Immunol ; 15: 1365074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510259

RESUMO

Staphylococcus aureus is a gram-positive bacterium that may cause intestinal inflammation by secreting enterotoxins, which commonly cause food-poisoning and gastrointestinal injuries. Staphylococcal enterotoxin B (SEB) acts as a superantigen (SAg) by binding in a bivalent manner the T-cell receptor (TCR) and the costimulatory receptor CD28, thus stimulating T cells to produce large amounts of inflammatory cytokines, which may affect intestinal epithelial barrier integrity and functions. However, the role of T cell-mediated SEB inflammatory activity remains unknown. Here we show that inflammatory cytokines produced by T cells following SEB stimulation induce dysfunctions in Caco-2 intestinal epithelial cells by promoting actin cytoskeleton remodelling and epithelial cell-cell junction down-regulation. We also found that SEB-activated inflammatory T cells promote the up-regulation of epithelial-mesenchymal transition transcription factors (EMT-TFs) in a nuclear factor-κB (NF-κB)- and STAT3-dependent manner. Finally, by using a structure-based design approach, we identified a SEB mimetic peptide (pSEB116-132) that, by blocking the binding of SEB to CD28, dampens inflammatory-mediated dysregulation of intestinal epithelial barrier.


Assuntos
Antígenos CD28 , Superantígenos , Humanos , Células CACO-2 , Enterotoxinas , Citocinas
2.
J Bacteriol ; 206(3): e0044723, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334326

RESUMO

Menstrual toxic shock syndrome (mTSS) is a rare but life-threatening disease associated with the use of high-absorbency tampons. The production of the Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1) superantigen is involved in nearly all cases of mTSS and is tightly controlled by regulators responding to the environment. In the prototypic mTSS strain S. aureus MN8, the major repressor of TSST-1 is the carbon catabolite protein A (CcpA), which responds to glucose concentrations in the vaginal tract. Healthy vaginal Lactobacillus species also depend on glucose for both growth and acidification of the vaginal environment through lactic acid production. We hypothesized that interactions between the vaginal microbiota [herein referred to as community state types (CSTs)] and S. aureus MN8 depend on environmental cues and that these interactions subsequently affect TSST-1 production. Using S. aureus MN8 ΔccpA growing in various glucose concentrations, we demonstrate that the supernatants from different CSTs grown in vaginally defined medium (VDM) could significantly decrease tst expression. When co-culturing CST species with MN8 ∆ccpA, we show that Lactobacillus jensenii completely inhibits TSST-1 production in conditions mimicking healthy menstruation or mTSS. Finally, we show that growing S. aureus in "unhealthy" or "transitional" CST supernatants results in higher interleukin 2 (IL-2) production from T cells. These findings suggest that dysbiotic CSTs may encourage TSST-1 production in the vaginal tract and further indicate that the CSTs are likely important for the protection from mTSS.IMPORTANCEIn this study, we investigate the impact of the vaginal microbiota against Staphylococcus aureus in conditions mimicking the vaginal environment at various stages of the menstrual cycle. We demonstrate that Lactobacillus jensenii can inhibit toxic shock syndrome toxin-1 (TSST-1) production, suggesting the potential for probiotic activity in treating and preventing menstrual toxic shock syndrome (mTSS). On the other side of the spectrum, "unhealthy" or "transient" bacteria such as Gardnerella vaginalis and Lactobacillus iners support more TSST-1 production by S. aureus, suggesting that community state types are important in the development of mTSS. This study sets forward a model for examining contact-independent interactions between pathogenic bacteria and the vaginal microbiota. It also demonstrates the necessity of replicating the environment when studying one as dynamic as the vagina.


Assuntos
Toxinas Bacterianas , Lactobacillus , Choque Séptico , Infecções Estafilocócicas , Feminino , Humanos , Staphylococcus aureus/metabolismo , Choque Séptico/microbiologia , Sinais (Psicologia) , Enterotoxinas/metabolismo , Superantígenos/metabolismo , Vagina/microbiologia , Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia , Glucose/metabolismo
3.
Trends Microbiol ; 32(3): 228-230, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38182522

RESUMO

Staphylococcus aureus is a proficient colonizer and opportunistic pathogen which can lead to vaginal dysbiosis, aerobic vaginitis, or life-threatening menstrual toxic shock syndrome. Here we explore the complex but underappreciated interactions that S. aureus may impose on the vaginal environment leading to additional disease outcomes.


Assuntos
Toxinas Bacterianas , Microbiota , Infecções Estafilocócicas , Feminino , Humanos , Enterotoxinas , Staphylococcus aureus , Superantígenos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38176845

RESUMO

OBJECTIVES: To study the genomic epidemiology of Streptococcus pyogenes causing bloodstream infections (GAS-BSI) in a Spanish tertiary hospital during the United Kingdom invasive S. pyogenes outbreak alert. METHODS: Retrospective epidemiological analysis of GAS-BSI during the January-May 2017-2023 period. WGS was performed using Ion torrent GeneStudio™ S5 system for emm typing and identification of superantigen genes in S. pyogenes isolated during the 2022-2023 UK outbreak alert. RESULTS: During 2023, there were more cases of GAS-BSI compared to the same period of previous year with a non-significant increase in children. Fourteen isolates were sequenced. The emm1 (6/14, 42.9%) and emm12 (2/14, 14.3%) types predominated; 5 of 6 (75%) emm1 isolates were from the M1UK clone. The most detected superantigen genes were speG (12/14, 85.7%), speC (10/14, 71.4%), speJ (7/14, 50%), and speA (5/15, 33.3%). speA and speJ were predominant in M1UK clone. CONCLUSIONS: Our genomic epidemiology in 2023 is similar to the reported data from the UK outbreak alert in the same period and different from previous national S. pyogenes surveillance reports.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Criança , Humanos , Streptococcus pyogenes/genética , Estudos Retrospectivos , Centros de Atenção Terciária , Antígenos de Bactérias/genética , Infecções Estreptocócicas/epidemiologia , Superantígenos/genética , Reino Unido/epidemiologia
5.
J Immunol Res ; 2024: 2313062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38268531

RESUMO

Superantigens are virulence factors secreted by microorganisms that can cause various immune diseases, such as overactivating the immune system, resulting in cytokine storms, rheumatoid arthritis, and multiple sclerosis. Some studies have demonstrated that superantigens do not require intracellular processing and instated bind as intact proteins to the antigen-binding groove of major histocompatibility complex II on antigen-presenting cells, resulting in the activation of T cells with different T-cell receptor Vß and subsequent overstimulation. To combat superantigen-mediated diseases, researchers have employed different approaches, such as antibodies and simulated peptides. However, due to the complex nature of superantigens, these approaches have not been entirely successful in achieving optimal therapeutic outcomes. CD28 interacts with members of the B7 molecule family to activate T cells. Its mimicking peptide has been suggested as a potential candidate to block superantigens, but it can lead to reduced T-cell activity while increasing the host's infection risk. Thus, this review focuses on the use of drug delivery methods to accurately target and block superantigens, while reducing the adverse effects associated with CD28 mimic peptides. We believe that this method has the potential to provide an effective and safe therapeutic strategy for superantigen-mediated diseases.


Assuntos
Anticorpos , Antígenos CD28 , Células Apresentadoras de Antígenos , Peptídeos , Superantígenos
6.
Int J Biol Macromol ; 256(Pt 1): 128437, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013079

RESUMO

Staphylococcus aureus has become a significant cause of health risks in humankind. Staphylococcal superantigens (SAgs) or enterotoxins are the key virulent factors that can exhibit acute diseases to severe life-threatening conditions. Recent literature reports S. aureus has steadily gained new enterotoxin genes over the past few decades. In spite of current knowledge of the established SAgs, several questions on putative enterotoxins are still remaining unanswered. Keeping that in mind, this study sheds light on a putative enterotoxin SEl26 to characterize its structural and functional properties. In-silico analyses indicate its close relation with the conventional SAgs, especially the zinc-binding SAgs. Additionally, important residues that are vital for the T-cell receptor (TcR) and major histocompatibility complex class II (MHC-II) interaction were predicted and compared with established SAgs. Besides, our biochemical analyses exhibited the binding of this putative enterotoxin with MHC-II, followed by regulating pro-inflammatory and anti-inflammatory cytokines.


Assuntos
Enterotoxinas , Staphylococcus aureus , Enterotoxinas/genética , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Superantígenos/genética , Superantígenos/metabolismo , Staphylococcus , Antígenos de Histocompatibilidade Classe II/genética
7.
Mol Ther ; 32(2): 490-502, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38098228

RESUMO

Inadequate T cell activation has severely limited the success of T cell engager (TCE) therapy, especially in solid tumors. Enhancing T cell activity while maintaining the tumor specificity of TCEs is the key to improving their clinical efficacy. However, currently, there needs to be more effective strategies in clinical practice. Here, we design novel superantigen-fused TCEs that display robust tumor antigen-mediated T cell activation effects. These innovative drugs are not only armed with the powerful T cell activation ability of superantigens but also retain the dependence of TCEs on tumor antigens, realizing the ingenious combination of the advantages of two existing drugs. Superantigen-fused TCEs have been preliminarily proven to have good (>30-fold more potent) and specific (>25-fold more potent) antitumor activity in vitro and in vivo. Surprisingly, they can also induce the activation of T cell chemotaxis signals, which may promote T cell infiltration and further provide an additional guarantee for improving TCE efficacy in solid tumors. Overall, this proof-of-concept provides a potential strategy for improving the clinical efficacy of TCEs.


Assuntos
Neoplasias , Linfócitos T , Humanos , Superantígenos/uso terapêutico , Antígenos de Neoplasias , Morte Celular
8.
J Immunol ; 212(3): 421-432, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108423

RESUMO

Staphylococcal superantigens induce massive activation of T cells and inflammation, leading to toxic shock syndrome. Paradoxically, increasing evidence indicates that superantigens can also induce immunosuppression by promoting regulatory T cell (Treg) development. In this study, we demonstrate that stimulation strength plays a critical role in superantigen-mediated induction of immunosuppressive human CD4+CD25+FOXP3+ T cells. Suboptimal stimulation by a low dose (1 ng/ml) of staphylococcal enterotoxin C1 (SEC1) led to de novo generation of Treg-like CD4+CD25+FOXP3+ T cells with strong suppressive activity. In contrast, CD4+CD25+ T cells induced by optimal stimulation with high-dose SEC1 (1 µg/ml) were not immunosuppressive, despite high FOXP3 expression. Signal transduction pathway analysis revealed differential activation of the PI3K signaling pathway and expression of PTEN in optimal and suboptimal stimulation with SEC1. Additionally, we identified that FOXP3 isoforms in Treg-like cells from the suboptimal condition were located in the nucleus, whereas FOXP3 in nonsuppressive cells from the optimal condition localized in cytoplasm. Sequencing analysis of FOXP3 isoform transcripts identified five isoforms, including a FOXP3 isoform lacking partial exon 3. Overexpression of FOXP3 isoforms confirmed that both an exon 2-lacking isoform and a partial exon 3-lacking isoform confer suppressive activity. Furthermore, blockade of PI3K in optimal stimulation conditions led to induction of suppressive Treg-like cells with nuclear translocation of FOXP3, suggesting that PI3K signaling impairs induction of Tregs in a SEC1 dose-dependent manner. Taken together, these data demonstrate that the strength of activation signals determined by superantigen dose regulates subcellular localization of FOXP3 isoforms, which confers suppressive functionality.


Assuntos
Fosfatidilinositol 3-Quinases , Superantígenos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T CD4-Positivos , Linfócitos T Reguladores , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Enterotoxinas , Isoformas de Proteínas/metabolismo , Fatores de Transcrição Forkhead/metabolismo
9.
Epidemiol Mikrobiol Imunol ; 72(3): 191-194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37871993

RESUMO

Streptococcus pyogenes causes a variety of human diseases ranging from uncomplicated respiratory tract and skin infections to severe invasive diseases possibly involving toxic shock syndrome. Besides the emm gene-encoded M protein, important virulence factors are pyrogenic exotoxins, referred to as superantigens. The National Reference Laboratory for Streptococcal Infections has newly introduced bioinformatics tools for processing S. pyogenes whole genome sequencing data. Using the SRST2 software and BV-BRC platform, WGS data of 10 S. pyogenes isolates from patients with invasive disease were analysed, and emm type, sequence type, and superantigen encoding gene profiles were determined. The Unicycler assembly pipeline with the SPAdes de novo assembler was used to assemble genome sequences from short reads.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/genética , Superantígenos/genética , Superantígenos/análise , Fatores de Virulência/genética , Sequenciamento Completo do Genoma , Antígenos de Bactérias/genética
10.
Bull Exp Biol Med ; 175(5): 662-666, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37861897

RESUMO

In 82 clinical strains of Streptococcus pyogenes (group A streptococci) isolated from patients with various manifestations of streptococcal infection, emm-typing revealed 27 emm-types (n=77) with a predominance of emm-89 (n=15; 18%), emm-75 (n=9; 11%), and emm-1 (n=6; 7%); types emm-3, emm-12, and emm-58 (n=4; 5% each) were found with almost equal frequency; other types were less common. The superantigen genes speC, speG, speH, speI, speJ, speK, speL, speM, smeZ, and SSA were identified in S. pyogenes strains using multiprimer PCR; the genes of the superantigen SpeA and cysteine proteinase SpeB were detected using real-time PCR. All the studied S. pyogenes strains contained superantigen genes, and 98% of the strains had several (from 2 to 7) genes. The number of variants of these sets reached 37; 2% of the strains contained only one superantigen gene. The distribution frequencies of superantigen genes in the studied strains were: speA - 43%; speC - 38%; speG - 93%; speH - 13%; speI - 6%; speJ - 24%; speK - 13%; speL and speM - 11% each; smeZ - 98%; SSA - 15%. All studied S. pyogenes strains contained the speB gene. Our studies have demonstrated that the sets of superantigen genes of group A streptococci are characterized by pronounced diversity to some extent associated with emm-type.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/genética , Antígenos de Bactérias/genética , Reação em Cadeia da Polimerase em Tempo Real , Superantígenos/genética , Biologia Molecular , Proteínas da Membrana Bacteriana Externa/genética
11.
Front Immunol ; 14: 1229562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731490

RESUMO

Life-threatening toxic shock syndrome is often caused by the superantigen toxic shock syndrome toxin-1 (TSST-1) produced by Staphylococcus aureus. A well-known risk factor is the lack of neutralizing antibodies. To identify determinants of the anti-TSST-1 antibody response, we examined 976 participants of the German population-based epidemiological Study of Health in Pomerania (SHIP-TREND-0). We measured anti-TSST-1 antibody levels, analyzed the colonization with TSST-1-encoding S. aureus strains, and performed a genome-wide association analysis of genetic risk factors. TSST-1-specific serum IgG levels varied over a range of 4.2 logs and were elevated by a factor of 12.3 upon nasal colonization with TSST-1-encoding S. aureus. Moreover, the anti-TSST-1 antibody levels were strongly associated with HLA class II gene loci. HLA-DRB1*03:01 and HLA-DQB1*02:01 were positively, and HLA-DRB1*01:01 as well as HLA-DQB1*05:01 negatively associated with the anti-TSST-1 antibody levels. Thus, both toxin exposure and HLA alleles affect the human antibody response to TSST-1.


Assuntos
Choque Séptico , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Alelos , Estudo de Associação Genômica Ampla , Choque Séptico/genética , Superantígenos/genética , Infecções Estafilocócicas/genética
12.
Int J Food Microbiol ; 404: 110352, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37549593

RESUMO

In order to analyze and clarify the thermal stability of food poisoning Staphylococcus aureus (S. aureus) enterotoxin-like X (SElX) and the biological characteristics of digestive enzymes, and to evaluate the risk of S. aureus carrying selx gene in food poisoning, the selx gene carrying rates of 165 strains isolated from 95 food poisoning events from 2006 to 2019 were first statistically analyzed. Subsequently, the purified recombinant SElX protein was digested and heated, and the superantigen activity was verified with mouse spleen cells and peripheral blood mononuclear cells of kittens. At the same time, the emetic activity and toxicity of SElX were evaluated using the kitten vomiting animal model, mice toxin model and in vitro cell models. The results showed the selx gene carrying rate of 165 food poisoning S. aureus strains was 90.30 %. SElX had significant resistance to heat treatment and pepsin digestion (pH = 4.0 and pH = 4.5), and had good superantigen activity and emetic activity. However, there is no significant lethal effect on mice and no significant toxicity to cells. Importantly, we found that SElX had an inhibitory effect on acidic mucus of goblet cells in various segments of the small intestine. The present study investigated the stability of SElX, and confirmed the emetic activity of SElX by establishing a kitten vomiting model for the first time, suggesting that SElX is a high risk toxin of food poisoning, which will provide new ideas for the prevention and control of S. aureus food poisoning.


Assuntos
Doenças Transmitidas por Alimentos , Intoxicação Alimentar Estafilocócica , Infecções Estafilocócicas , Animais , Gatos , Feminino , Camundongos , Enterotoxinas/metabolismo , Staphylococcus aureus , Eméticos/metabolismo , Eméticos/farmacologia , Leucócitos Mononucleares/metabolismo , Superantígenos/genética , Superantígenos/metabolismo , Vômito/induzido quimicamente , Proteínas Recombinantes
13.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445686

RESUMO

Bacterial superantigens (SAgs) are effective T-cell stimulatory molecules that lead to massive cytokine production. Superantigens crosslink between MHC class II molecules on the Antigen Presenting Cells (APC) and TCR on T-cells. This enables them to activate up to 20% of resting T cells, whilst conventional antigen presentation results in the activation of 0.001-0.0001% of the T cell population. These biological properties of superantigens make them attractive for use in immunotherapy. Previous studies have established the effectiveness of superantigens as therapeutic agents. This, however, was achieved with severe side effects due to the high lethality of the native toxins. Our study aims to produce superantigen-based peptides with minimum or no lethality for safer cancer treatment. In previous work, we designed and synthesized twenty overlapping SPEA-based peptides and successfully mapped regions in SPEA superantigen, causing a vasodilatory response. We screened 20 overlapping SPEA-based peptides designed and synthesized to cover the whole SPEA molecule for T-cell activation and tumor-killing ability. In addition, we designed and synthesized tumor-targeted superantigen-based peptides by fusion of TGFαL3 either from the N' or C' terminal of selected SPEA-based peptides with an eight-amino acid flexible linker in between. Our study identified parts of SPEA capable of stimulating human T-cells and producing different cytokines. We also demonstrated that the SPEA-based peptide conjugate binds specifically to cancer cells and can kill this cancer. Peptides induce T-cell activation, and tumor killing might pave the way for safer tumor-targeted superantigens (TTS). We proposed the combination of our new superantigen-based peptide conjugates with other immunotherapy techniques for effective and safer cancer treatment.


Assuntos
Neoplasias , Superantígenos , Humanos , Peptídeos/farmacologia , Linfócitos T , Neoplasias/terapia , Imunoterapia , Enterotoxinas
14.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511553

RESUMO

As a biological macromolecule, the superantigen staphylococcal enterotoxin C2 (SEC2) is one of the most potent known T-cell activators, and it induces massive cytotoxic granule production. With this property, SEC2 and its mutants are widely regarded as immunomodulating agents for cancer therapy. In a previous study, we constructed an MHC-II-independent mutant of SEC2, named ST-4, which exhibits enhanced immunocyte stimulation and antitumor activity. However, tumor cells have different degrees of sensitivity to SEC2/ST-4. The mechanisms of immune resistance to SEs in cancer cells have not been investigated. Herein, we show that ST-4 could activate more powerful human lymphocyte granule-based cytotoxicity than SEC2. The results of RNA-seq and atomic force microscopy (AFM) analysis showed that, compared with SKOV3 cells, the softer ES-2 cells could escape from SEC2/ST-4-induced cytotoxic T-cell-mediated apoptosis by regulating cell softness through the CDC42/MLC2 pathway. Conversely, after enhancing the stiffness of cancer cells by a nonmuscle myosin-II-specific inhibitor, SEC2/ST-4 exhibited a significant antitumor effect against ES-2 cells by promoting perforin-dependent apoptosis and the S-phase arrest. Taken together, these data suggest that cell stiffness could be a key factor of resistance to SEs in ovarian cancer, and our findings may provide new insight for SE-based tumor immunotherapy.


Assuntos
Antineoplásicos , Enterotoxinas , Humanos , Enterotoxinas/farmacologia , Enterotoxinas/metabolismo , Superantígenos/farmacologia , Antineoplásicos/farmacologia , Linfócitos T , Ativação Linfocitária
15.
Toxins (Basel) ; 15(6)2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37368664

RESUMO

Exposure to Staphylococcus aureus enterotoxin B (SEB) is one of the causes of food poisoning and is associated with several immune diseases due to its superantigen capability. This study aimed to characterize the differentiations of naïve Th cells stimulated with different doses of SEB. The expression of T-bet, GATA-3, and Foxp3 or secretion of IFN-γ, IL-4, IL-5, IL-13, and IL-10 were evaluated in wild-type (WT) or DO11.10 CD4 T cells co-cultured with bone marrow dendritic cells (BMDCs). We found that the balance of Th1/Th2 could be dominated by the doses of SEB stimulation. A higher SEB dose could induce more Th1 and a lower Th2/Th1 ratio in Th cells co-cultured with BMDCs. This different tendency of Th cell differentiation induced by the SEB complements the existing knowledge about SEB acting as a superantigen to activate Th cells. Additionally, it is also helpful in managing the colonization of S. aureus and food contamination of SEB.


Assuntos
Staphylococcus aureus , Linfócitos T Auxiliares-Indutores , Staphylococcus aureus/metabolismo , Enterotoxinas/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Superantígenos , Células Th1 , Células Th2 , Citocinas/metabolismo
16.
Front Immunol ; 14: 1176432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377961

RESUMO

Patients with relapsed T cell acute lymphoblastic leukemia (T-ALL) have limited therapeutic options and poor prognosis. The finding of efficient strategies against this refractory neoplasm is a medical priority. Superantigens (SAgs) are viral and bacterial proteins that bind to major histocompatibility complex class II molecules as unprocessed proteins and subsequently interact with a high number of T cells expressing particular T cell receptor Vß chains. Although on mature T cells, SAgs usually trigger massive cell proliferation producing deleterious effects on the organism, in contrast, on immature T cells, they may trigger their death by apoptosis. On this basis, it was hypothesized that SAgs could also induce apoptosis in neoplastic T cells that are usually immature cells that probably conserve their particular Vß chains. In this work, we investigated the effect of the SAg Staphylococcus aureus enterotoxin E (SEE) (that specifically interacts with cells that express Vß8 chain), on human Jurkat T- leukemia line, that expresses Vß8 in its T receptor and it is a model of the highly aggressive recurrent T-ALL. Our results demonstrated that SEE could induce apoptosis in Jurkat cells in vitro. The induction of apoptosis was specific, correlated to the down regulation of surface Vß8 TCR expression and was triggered, at least in part, through the Fas/FasL extrinsic pathway. The apoptotic effect induced by SEE on Jurkat cells was therapeutically relevant. In effect, upon transplantation of Jurkat cells in the highly immunodeficient NSG mice, SEE treatment reduced dramatically tumor growth, decreased the infiltration of neoplastic cells in the bloodstream, spleen and lymph nodes and, most importantly, increased significantly the survival of mice. Taken together, these results raise the possibility that this strategy can be, in the future, a useful option for the treatment of recurrent T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Superantígenos , Humanos , Camundongos , Animais , Enterotoxinas/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Apoptose , Receptores de Antígenos de Linfócitos T
17.
J Biomed Sci ; 30(1): 49, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381064

RESUMO

BACKGROUND: The inflammatory response is indispensable for protective immunity, yet microbial pathogens often trigger an excessive response, 'cytokine storm', harmful to the host. Full T-cell activation requires interaction of costimulatory receptors B7-1(CD80) and B7-2(CD86) expressed on antigen-presenting cells with CD28 expressed on the T cells. We created short peptide mimetics of the homodimer interfaces of the B7 and CD28 receptors and examined their ability to attenuate B7/CD28 coligand engagement and signaling through CD28 for inflammatory cytokine induction in human immune cells, and to protect from lethal toxic shock in vivo. METHODS: Short B7 and CD28 receptor dimer interface mimetic peptides were synthesized and tested for their ability to attenuate the inflammatory cytokine response of human peripheral blood mononuclear cells, as well as for their ability to attenuate B7/CD28 intercellular receptor engagement. Mice were used to test the ability of such peptides to protect from lethal superantigen toxin challenge when administered in molar doses far below the toxin dose. RESULTS: B7 and CD28 homodimer interfaces are remote from the coligand binding sites, yet our finding is that by binding back into the receptor dimer interfaces, short dimer interface mimetic peptides inhibit intercellular B7-2/CD28 as well as the tighter B7-1/CD28 engagement, attenuating thereby pro-inflammatory signaling. B7 mimetic peptides exhibit tight selectivity for the cognate receptor in inhibiting intercellular receptor engagement with CD28, yet each diminishes signaling through CD28. In a prominent example of inflammatory cytokine storm, by attenuating formation of the B7/CD28 costimulatory axis, B7-1 and CD28 dimer interface mimetic peptides protect mice from lethal toxic shock induced by a bacterial superantigen even when administered in doses far submolar to the superantigen. CONCLUSIONS: Our results reveal that the B7 and CD28 homodimer interfaces each control B7/CD28 costimulatory receptor engagement and highlight the protective potential against cytokine storm of attenuating, yet not ablating, pro-inflammatory signaling via these receptor domains.


Assuntos
Antígenos CD28 , Choque Séptico , Humanos , Animais , Camundongos , Leucócitos Mononucleares , Moléculas de Adesão Celular , Síndrome da Liberação de Citocina , Citocinas , Polímeros , Superantígenos
18.
Eur Rev Med Pharmacol Sci ; 27(11): 5301-5309, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37318504

RESUMO

OBJECTIVE: Staphylococcus aureus-induced toxic shock syndrome (TSS) is a rare, but potentially fatal disease with limited treatment options. The emergence of antibiotic-resistant strains has led to a pressing need for the development of effective therapies. This study aimed to identify and optimize potential drug candidates against toxic shock syndrome by targeting the pathogenic toxin protein using chromones as lead compounds. MATERIALS AND METHODS: In this study, 20 chromones were screened for their ability to bind to the target protein. The top compounds were further optimized through the addition of cycloheptane and amide groups, and the resulting compounds were evaluated for their drug-like properties using chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling. RESULTS: Among the compounds screened, 7-Glucosyloxy-5-hydroxy-2-[2-(4-hydroxyphenyl) ethyl] chromone exhibited the highest binding affinity with a molecular weight of 341.40 g/mol and a binding energy of -10.0 kcal/mol. The optimized compound exhibited favorable drug-like properties, including high water solubility, synthetic accessibility, skin permeation, bioavailability, and gastrointestinal absorption. CONCLUSIONS: This study suggests that chromones can be engineered to develop effective drugs against TSS caused by S. aureus. The optimized compound has the potential to be a promising therapeutic agent for the treatment of TSS, providing new hope for patients suffering from this life-threatening disease of toxic shock syndrome.


Assuntos
Toxinas Bacterianas , Staphylococcus aureus Resistente à Meticilina , Choque Séptico , Infecções Estafilocócicas , Humanos , Enterotoxinas/metabolismo , Enterotoxinas/toxicidade , Toxinas Bacterianas/metabolismo , Choque Séptico/tratamento farmacológico , Superantígenos/metabolismo , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Infecções Estafilocócicas/tratamento farmacológico
19.
Zhonghua Liu Xing Bing Xue Za Zhi ; 44(4): 629-635, 2023 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-37147837

RESUMO

Objective: The docking and superantigen activity sites of staphylococcal enterotoxin-like W (SElW) and T cell receptor (TCR) were predicted, and its SElW was cloned, expressed and purified. Methods: AlphaFold was used to predict the 3D structure of SElW protein monomers, and the protein models were evaluated with the help of the SAVES online server from ERRAT, Ramachandran plot, and Verify_3D. The ZDOCK server simulates the docking conformation of SElW and TCR, and the amino acid sequences of SElW and other serotype enterotoxins were aligned. The primers were designed to amplify selw, and the fragment was recombined into the pMD18-T vector and sequenced. Then recombinant plasmid pMD18-T was digested with BamHⅠand Hind Ⅲ. The target fragment was recombined into the expression plasmid pET-28a(+). After identification of the recombinant plasmid, the protein expression was induced by isopropyl-beta-D- thiogalactopyranoside. The SElW expressed in the supernatant was purified by affinity chromatography and quantified by the BCA method. Results: The predicted three-dimensional structure showed that the SElW protein was composed of two domains, the amino-terminal and the carboxy-terminal. The amino-terminal domain was composed of 3 α-helices and 6 ß-sheets, and the carboxy-terminal domain included 2 α-helices and 7 antiparallel ß-sheets composition. The overall quality factor score of the SElW protein model was 98.08, with 93.24% of the amino acids having a Verify_3D score ≥0.2 and no amino acids located in disallowed regions. The docking conformation with the highest score (1 521.328) was selected as the analysis object, and the 19 hydrogen bonds between the corresponding amino acid residues of SElW and TCR were analyzed by PyMOL. Combined with sequence alignment and the published data, this study predicted and found five important superantigen active sites, namely Y18, N19, W55, C88, and C98. The highly purified soluble recombinant protein SElW was obtained with cloning, expression, and protein purification. Conclusions: The study found five superantigen active sites in SElW protein that need special attention and successfully constructed and expressed the SElW protein, which laid the foundation for further exploration of the immune recognition mechanism of SElW.


Assuntos
Enterotoxinas , Superantígenos , Humanos , Enterotoxinas/genética , Superantígenos/genética , Domínio Catalítico , Selenoproteína W/metabolismo , Receptores de Antígenos de Linfócitos T
20.
Front Immunol ; 14: 1170821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207220

RESUMO

Staphylococcus aureus superantigens (SAgs) such as staphylococcal enterotoxin A (SEA) and B (SEB) are potent toxins stimulating T cells to produce high levels of inflammatory cytokines, thus causing toxic shock and sepsis. Here we used a recently released artificial intelligence-based algorithm to better elucidate the interaction between staphylococcal SAgs and their ligands on T cells, the TCR and CD28. The obtained computational models together with functional data show that SEB and SEA are able to bind to the TCR and CD28 stimulating T cells to activate inflammatory signals independently of MHC class II- and B7-expressing antigen presenting cells. These data reveal a novel mode of action of staphylococcal SAgs. By binding to the TCR and CD28 in a bivalent way, staphylococcal SAgs trigger both the early and late signalling events, which lead to massive inflammatory cytokine secretion.


Assuntos
Antígenos CD28 , Superantígenos , Inteligência Artificial , Staphylococcus/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Receptores de Antígenos de Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...